Với mục đích giúp học sinh dễ dàng nhớ và nắm vững những công thức của Toán lớp 6 học kì 1, Điểm 10+ đã tóm tắt bộ công thức Toán lớp 6 phần 2 sẽ giúp học sinh đạt được điểm cao trong đề thi HK1 Toán học 6 sắp tới.
CHƯƠNG II: SỐ NGUYÊN
1. Tập hợp các số nguyên:
- Trong đời sống hàng ngày người ta dùng các số mang dấu "-" và dấu "+" để chỉ các đại lượng có thể xét theo hai chiều khác nhau.
- Tập hợp: {...; -3; -2; -1; 0; 1; 2; 3; ...} gồm các số nguyên âm, số 0 và các số nguyên dương là tập hợp các số nguyên. Kí hiệu là Z.
- Các số đối nhau là: 1 và -1; 2 và -2; a và -a;…
- So sánh hai số nguyên a và b: a < b ⟺ điểm a nằm bên trái điểm b trên trục số.
- Mọi số nguyên dương đều lớn hơn số 0.
- Mọi số nguyên âm đều nhỏ hơn số 0.
- Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.
2. Giá trị tuyệt đối của số nguyên a, kí hiệu |a| là khoảng cách từ điểm a đến điểm gốc 0 trên trục số.
a nếu ≥ 0
- Cách tính:|a| =
a nếu < 0
- Giá trị tuyệt đối của một số nguyên dương là chính nó.
- Giá trị tuyệt đối của một số nguyên âm là số đối của nó (và là một số nguyên dương)
- Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì lớn hơn.
- Hai số đối nhau có giá trị tuyệt đối bằng nhau.
3. Cộng hai số nguyên:
- Cộng hai số nguyên cùng dấu: ta cộng hai giá trị tuyệt đối của chúng rồi đặt dấu chung trước kết quả.
- Cộng hai số nguyên khác dấu: ta tìm hiệu hai giá trị tuyệt đối của chúng (số lớn trừ số nhỏ) rồi đặt trước kết quả tìm được dấu của số có giá trị tuyệt đối lớn hơn.
- Tính chất của phép cộng các số nguyên:
- Giao hoán: a + b = b + a
- Kết hợp: (a + b) + c = a + (b + c)
- Cộng với số 0: a + 0 = 0 + a = a
- Cộng với số đối: a + (-a) = 0
- Hai số có tổng bằng 0 là hai số đối nhau.
4. Phép trừ hai số nguyên: a - b = a + (-b)
5. Quy tắc dấu ngoặc:
- Khi bỏ dấu ngoặc có dấu "-" đằng trước, ta phải đổi dấu các số hạng trong dấu ngoặc: dấu "+" thành dấu "-" và dấu "-" thành dấu "+".
- Khi bỏ dấu ngoặc có dấu "+" đằng trước thì dấu các số hạng trong ngoặc vẫn giữ nguyên.
6. Tổng đại số: là một dãy các phép tính cộng, trừ các số nguyên.
- Tính chất: trong một tổng đại số, ta có thể:
- Thay đổi tùy ý vị trí các số hạng kèm theo dấu của chúng.
- Đặt dấu ngoặc để nhóm các số hạng một cách tùy ý với chú ý rằng nếu trước dấu ngoặc là dấu "-" thì phải đổi dấu tất cả các số hạng trong ngoặc.
7. Quy tắc chuyển vế: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu "+" thành dấu "-" và dấu "-" thành dấu "+".
8. Nhân hai số nguyên: - Nhân hai số nguyên cùng dấu: ta nhân hai giá trị tuyệt đối của chúng.
- Nhân hai số nguyên khác dấu: ta nhân hai giá trị tuyệt đối của chúng rồi đặt dấu "-" trước kết quả nhận được.
- Chú ý:
- a . 0 = 0
- Cách nhận biết dấu của tích:
(+) . (+) → (+) (-) . (-) → (+) (+) . (-) → (-) (-) . (+) → (-)
- a. b = 0 thì a = 0 hoặc b = 0
- Khi đổi dấu một thừa số thì tích đổi dấu. Khi đổi dấu hai thừa số thì tích không thay đổi.
- Tính chất của phép nhân các số nguyên:
- Giao hoán: a. b = b . a
- Kết hợp: (a . b) . c = a . (b . c)
- Nhân với 1: a . 1 = 1 . a = a
- Tính chất phân phối của phép nhân đối với phép cộng: a . (b + c) = ab + ac. Tính chất trên cũng đúng đối với phép trừ: a (b - c) = ab - ac
9. Bội và ước của một số nguyên:
- Cho a, b ∈ Z và b ≠ 0. Nếu có số nguyên q sao cho a = bq thì ta nói a chia hết cho b. Ta còn nói a là bội của b và b là ước của a.
- Chú ý:
- Số 0 là bội của mọi số nguyên khác 0.
- Số 0 không phải là ước của bất kì số nguyên nào.
- Các số 1 và -1 là ước của mọi số nguyên.
- Tính chất:
- Nếu a chia hết cho b và b chia hết cho c thì a cũng chia hết cho c.
- Nếu a chia hết cho b thì bội của a cũng chia hết cho b.
- Nếu hai số a, b chia hết cho c thì tổng và hiệu của chúng cũng chia hết cho c.
CHƯƠNG III: PHÂN SỐ
1. Khái niệm phân số: người ta gọi với a,b ∈ Z và b ≠ 0 là một phân số, a là tử số (tử), b là mẫu số (mẫu) của phân số.
- Số nguyên a được coi là phân số với mẫu số là 1: a = a/1
2. Hai phân số bằng nhau: Hai phân số và gọi là bằng nhau nếu a. d = b . c
3.Tính chất cơ bản của phân số:
- Nếu ta nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho.
- Nếu ta chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.
4. Rút gọn phân số:
- Muốn rút gọn một phân số, ta chia cả tử và mẫu của phân số cho một ước chung (khác và -1) của chúng.
- Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là 1 và -1. Để rút gọn một lần mà được kết quả là phân số tối giản, chỉ cần chia tử và mẫu của phân số cho ƯCLN của chúng.
- Để rút gọn một phân số có thể phân tích tử và mẫu thành tích các thừa số.
5. Các bước quy đồng mẫu số nhiều phân số với mẫu số dương:
- Bước 1: Tìm một bội chung của các mẫu (thường là BCNN) để làm mẫu chung.
- Bước 2: Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu).
- Bước 3: Nhân cả tử và mẫu của mỗi phân số với thừa số phụ tương ứng.
6. So sánh hai phân số: - Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.
- Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh các tử với nhau: phân số nào có tử lớn hơn thì lớn hơn.
- Nhận xét:
- Phân số có tử và mẫu là hai số nguyên cùng dấu thì lớn hơn 0, gọi là phân số dương.
- Phân số có tử và mẫu là hai số nguyên khác dấu thì nhỏ hơn 0, gọi là phân số âm.
- Ta còn có các cách so sánh phân số như sau:
- Áp dụng tính chất: < ⇔ a.d b.c (a, b, c, d ∈ Z; b, d > 0)
- Đưa về hai phân số cùng tử rồi so sánh mẫu.
- Chọn số thứ ba làm trung gian.
7. Các phép tính cộng, trừ, nhân, chia phân số:
8. Hỗn số, số thập phân, phần trăm: - Một phân số lớn hơn 1 có thể viết dưới dạng hỗn số. Hỗn số có thể viết dưới dạng phân số.
- Khi viết một phân số âm dưới dạng hỗn số, ta chỉ cần viết số đối của nó dưới dạng hỗn số rồi đặt dấu "-" trước kết quả nhận được.
- Phân số thập phân là phân số mà mẫu là lũy thừa của 10.
- Các phân số thập phân có thể viết được dưới dạng số thập phân.
Số thập phân gồm hai phần:
- Phần số nguyên viết bên trái dấu phẩy.
- Phần thập phân viết bên phải dấu phẩy. Số chữ số của phần thập phân đúng bằng số chữ số 0 ở mẫu của phân số thập phân.
- Những phân số có mẫu số là 100 còn được viết dưới dạng phần trăm với kí hiệu %.
Kết luận
Trên đây là tổng hợp các công thức toán 6, Các bạn có thể tham khảo và ôn tập cho các kỳ thi sắp tới. Hy vọng rằng bài viết này của Điểm 10+ sẽ hữu ích đối với bạn.
CẬP NHẬT MỚI NHẤT thông tin liên hệ và các chi nhánh của Điểm 10+: Tại đây
Tham khảo KHÓA HỌC TOÁN LỚP 6: Tại đây